

Algal Translational Genomics (ATG)

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

March 2021

Advanced Algal Systems

Shawn Starkenburg, Los Alamos National Laboratory (LANL)

Project Overview

Goal: Use genomics to accurately characterize the metabolic potential of leading production strains to enable performance improvements

Motivation:

Lack of Curated Metabolic Models

- Un-curated Annotations/genes misannotated, plus gaps in key metabolic pathways
- IMPACT: impedes strain improvement and tailoring of cultivation conditions to maximize yield

Incomplete Genomes for Genetic Engineering

- High degree of fragmentation- causes incomplete gene models
- long repetitive DNA elements and allelic/structural variation in polyploid genomes confound assembly algorithms (only 1 euk. genome completed from telomere to telomere!)
- IMPACT: hinders strain improvement via genetic modification, mating/breeding studies, and/or engineering of chromosomes to improve strain performance

Lack of Knowledge of Carbon Utilization from Waste Streams

Management

THE TEAM:

Personnel	Role
Shawn Starkenburg	Science Direction, Administration
Joseph Msanne (NMC)	Annotation Curation and Phenotyping Studies
Justin Zhang, Hajni Daligault, Thomas Biondi	Genome Assembly, Bioinformatics, System admin.
Yuliya Kunde	Sequencing Technician

ADMINISTRATION: Weekly Team Meetings, One-on-One progress checks/consults as needed, Performance / Merit tied to Milestone Completion, and publications. Quarterly Written Communication with BETO with 6-week pulse checks with BETO TPM via Webex.

RISKS & MITIGATION:

False Positives from HTP Phenotyping: Validate with Flask Studies

HMW DNA Extraction: Evaluate different Protocols, augment cell lysis protocol

Poor Scaffolding: Built In Mitigation by comparing 3 Technologies

Approach

Year 1

Year 2

Year 3

Task 1: Annotation Curation & Metabolic Pathway Construction

Task 2: Phenotyping and Validation Studies

Task 3: Advancement of Genome Assembly Methods

Key Milestones:

- 1) Curated pathways for organic and inorganic carbon uptake
- 2) 100% Complete Assembly of Scenedesmus Genome

Why Scenedesmus?

- Established Baseline Productivity; contributes to SOT (among the best performers)
- Waste to Energy Potential; high productivity and nutrient removal rates in waste water treatment systems
- Genomic resources for multiple strains to assess conserved and unique metabolic properties
 - Strain 46DB3 (Guarnieri, NREL)
 - *S. obliquus* 152Z, UTEX393
 - S. quadricaudus
- Perfect Genome Size; sufficiently large to challenge scaffolding methods
- Life cycle is not known (Needed for breeding strategies to improve traits)

*Courtesy of MicroBio Engineering

Proposed Model of Carbon Fixation In Scenedesmus (J. Polle, CUNY)

IMPACT

OUTCOMES

- Curation of genome annotations to develop comprehensive models of canonical (and alternative) autotrophic and heterotrophic carbon assimilation
- Experimental validation of both conserved and strain specific pathways for enhancements.
- Lays the groundwork for improving biomass production rates under carbonand light-limited conditions in large-scale ponds, and improve carbon input cost sustainability through discovery and utilization of efficient carbon metabolism pathways.

INDUSTRIAL RELEVANCE

- Optimizing cultivation in organic rich wastewater sources to improve productivity
- Helps achieve carbon input cost sustainability through discovery and utilization of efficient carbon metabolism pathways
- Enable academic and industrial entities to both contribute to the work and reap the benefits of BETO funded national laboratory programs
- Enables genetic manipulation and breeding of production strains to improve biomass yields/traits

Task 1: Annotation Curation & Metabolic Pathway Construction

Literature Search

What is known about C metabolism in *Scenedesmus*?

Construct Custom C Metabolism
Model

Curate Metabolic Maps with Phenotyping Data

Completed a literature review to identify carbon metabolism genes/proteins and known growth response(s) in wastewater sources.

*Published as a minireview in Algal Research -

https://doi.org/10.1016/j.algal.2020.101911.

*Initial characterization of C metabolism in Scenedesmus obliquus 152Z submitted for publication.

Key Milestone: Custom, in silico model constructed for organic and inorganic carbon uptake, regulation, and metabolism conserved in all sequenced *Scenedesmus* strains with zero gaps in proposed pathways.

Task 1: Annotation Curation & Metabolic Pathway Construction

Literature Search

What is known about C metabolism in *Scenedesmus*?

Construct Custom C Metabolism Model

Curate Metabolic Maps with Phenotyping Data

Manual Curation / "Gap" filling of pathways

Reductive carboxylate cycle (CO2 fixation): 1.2.7.1; 1.3.99.1; 1.4.1.1; 2.7.9.2; 6.2.1.5

Photosynthesis: 1.10.9.1 (mislabeled in the table as 1.10.99.1).

 $\textbf{Carbon Fixation in Photosynthetic Organisms:}\ 1.2.1.59;\ 2.7.1.14;\ 2.7.9.1;\ 4.1.2.22;\ 4.1.2.9$

Amino sugar and nucleotide sugar

metabolism: 2.7.1.6; 2.7.7.22; 2.7.7.23; 3.2.1.55; 3.5.1.33 (3.5.1.108 same

description); 5.1.3.18.

Ascorbate and aldarate metabolism: 1.8.5.1.

utanoate metabolism: 1.2.7.1; 1.3.99.1; 3.1.1.75; 4.1.1.5; 5.1.2.3; 6.2.1.16.

C5-Branched dibasic acid metabolism: 4.1.1.5; 4.1.3.25; 6.2.1.5.

Citrate cycle (TCA cycle): 4.1.1.32; 6.2.1.5.

Fructose and mannose metabolism: 2.7.1.105; 2.7.1.28; 3.1.3.46 (only found in UTEX B

3031 and NREL 46B-D3); 3.2.1.80. **Galactose metabolism:** 2.7.1.6.

Glycolysis / Gluconeogenesis: 1.2.1.59; 1.2.7.1; 4.1.1.32; 5.4.2.1.

Glyoxylate and dicarboxylate metabolism: 1.1.1.26; 1.1.1.29; 1.1.1.60 (); 1.1.1.79 (1.1.1.

81); 1.12.7.2; 1.5.1.5; 3.1.3.18; 3.5.1.31 (3.5.1.88 same description); 3.5.4.9

Pentose and glucuronate interconversions: 2.7.1.16 (2.7.1.47 same description); 2.7.1.45.

nositol phosphate metabolism: 1.2.1.27; 2.7.1.134; 2.7.1.140 (2.7.1.151); 2.7.1.158; 3.1.3.26; 3.1.3.57; 3.1.3.62 (3.1.3.8 same

description); 3.1.3.66; 3.1.3.67.

Pentose phosphate pathway: 1.1.1.44; 5.4.2.7.

Propanoate metabolism: 2.3.1.8.

Starch and sucrose metabolism: 2.4.1.12; 2.4.1.15; 3.1.3.24; 3.2.1.3.

Key Milestone: Studies completed to screen for improved growth in mixotrophic and heterotrophic growth on C2-C6 monomers and HMW polymers over autotrophic conditions.

Task 2: Phenotyping and Validation Studies

Carbon Utilization
Studies

C2-C6, Polymers

Measure systems level response +/- C source, High and low CO₂

Targeted Metabolic
Analysis

¹³C-CO₂ or Bicarbonate

Curate Metabolic Maps with Phenotyping Data

HTP Screening

+ Validation Studies

BG 11 Medium (+Substrate)	Light	Dark
10 mM Xylose		†
10 mM Ribose		
10 mM Sorbitol		
10 mM Fructose	†	†
10 mM Galactose		+
10 mM D Glucose		‡
10 mM Maltose		
0.1% Cellobiose (w/v)		
0.1% α Cellulose (w/v)	†	†
0.1% Starch (w/v)		
0.1% Pectin (w/v)		
0.01% Guar (w/v)		
0.1% N acetyl D galactosamine (w/v)		t
0.1% Chitin (w/v)	†	
0.1% Chitosan (w/v)		

Go/No Go: 30% improved growth in mixotrophic or heterotrophic growth over autotrophic conditions

Task 3: Advancement of Genome Assembly Methods

https://doi.org/10.1016/j.algal.2020.101968

Key Milestone: 100% complete assembly of an algal genome

Task 3: Advancement of Genome Assembly Methods

Extraction/Purification of HMW DNA

Construct Scaffolding Libraries

Scaffold S. obliquus 152Z with each technology

Publish Results – Complete Genome + Curated Annotation

Statistics	Improved Pacbio Assembly	Bionano Assembly Scaffolded	Hybrid Scaffolded + Unscaffolded
Count	427	86	326
Min length (Mbp)	0.003	0.179	0.003
Median length (Mbp)	0.138	1.659	0.029
Mean length (Mbp)	0.465	2.203	0.62
N50 length (Mbp)	1.297	3.292	3.04
Max length (Mbp)	4.75	6.204	6.204
Total length (Mbp)	198.517	189.434	202.206

	Draft assembly (Starkenburg et. al., 2017)	+ New HiFi Reads hifiasm	HiFi Hifiasm+ purge_dups
Scaffolds	2705	81	42
Contigs	2705	81	42
Gaps	N/A	62	23
Assembly Size	207,967,116 bp	111,225,458 bp	107,176,229 bp
Scaffold N50	155,544 bp	4,973,244 bp	5,167,611 bp
Largest scaffold	2,334,183 bp	7,844,655 bp	7,844,655 bp
BUSCO Complete %	97.3%	97.4%	97.4%
Duplicated BUSCO %	N/A	3.5%	2.0% 2/23/

Summary

- Curated carbon metabolism pathways for a leading production strain
- Validated mixotrophic & heterotrophic carbon utilization in Scenedesmus 152Z
- Setting new gold standard in algal genomics
 - Published meta-analysis on the state of the art of algal genomics
 - Evaluated new assembly techniques to construct (nearly!) 100% complete genomes
- Ported Genomes from Greenhouse to JGI-Phycocosm to create a unified resource for all stakeholders
- Forms the foundation for genetic manipulation and breeding of production strains to improve biomass yields/traits

Quad Chart Overview

Timeline

- Project start: October 2018
- Project end date: September 2021

FY20 Active Project

DOE Funding

Project Partners*

New Mexico Consortium (25%)

Barriers addressed

- Lack of Biomass Genetics and Physiological Knowledge of Production Strains (AftC)
- Working towards MYPP goals to improve productivity in mass cultivation

Project Goal

Use genomics to accurately characterize the metabolic potential of leading production strains to enable performance improvements

End of Project Milestones

- Curated/validated metabolic models of inorganic and organic carbon uptake
- 100% Complete Assembly of a Diploid Algal Genome

Funding Mechanism

Annual Operating Plan Expenditures

ADDITIONAL SLIDES

Publications & Presentations

PUBLICATIONS (6)

Joseph Msanne, Juergen Polle, S.R. Starkenburg. An assessment of heterotrophy and mixotrophy in *Scenedesmus* and its utilization in wastewater treatment. Algal Research, Volume 48, 2020, ISSN 2211-9264, https://doi.org/10.1016/j.algal.2020.101911.

Erik Hanschen, B.T. Hovde. S.R. Starkenburg. An evaluation of methodology to determine algal genome completeness. Volume 51, October 2020. Algal Research. https://doi.org/10.1016/j.algal.2020.102019.

Jenna Schambach, Anna Finck, Peter Kitin, Christopher Hunt, Erik Hanschen, Brian Vogler, Shawn R. Starkenburg, Amanda Barry. Growth, total lipid, and omega-3 fatty acid production by *Nannochloropsis* spp. cultivated with raw plant substrate. 2020. *Algal Research*. https://doi.org/10.1016/j.algal.2020.102041

Erik Hanschen and S.R. Starkenburg. The state of algal genome quality and diversity. Algal Research, Volume 50, ISSN 2211-9264, https://doi.org/10.1016/j.algal.2020.101968.

J. A. Ohan, B. T. Hovde, X. L. Zhang, K. Davenport, O. Chertkov, C. Han, S. Twary, **S.R. Starkenburg**. Nuclear Genome Assembly of the Microalga *Nannochloropsis salina* CCMP1776.

Christina Steadman, Blake Hovde, Hajnalka Daligault, Xiang Zhang, Yuliya Kunde, Babetta Marrone, Scott Twary, **S.R. Starkenburg**. 2019. High-quality draft genome of the green algae *Tetraselmis striata* (Chlorophyta) generated from PacBio sequencing. *Microbiology Resource Announcements* Oct 2019, 8 (43) e00780-19; DOI: 10.1128/MRA.00780-19.

PRESENTATIONS

- 2020, Understanding the Rules of Life: Complexity in Algal Systems Workshop (Virtual). Title: The state and quality of algal genomics.
 Cosponsored by NSF and DOE-EERE.
- 2020. Understanding the Rules of Life: Complexity in Algal Systems Workshop (Virtual). Title: An Evaluation of Methodology to Determine Genome Completeness.
- 2020. Sequencing, Finishing and Analysis in the Future. Genomics Conference. Title: The state and quality of algal genomics.
- 2020. ABO Summit (Virtual). Title: Analysis of Algal Genomics Demonstrates Declining Quality and Gaps in Species Distribution
- 2019, Department of Energy Peer Review, "Algal Translational Genomics", Denver, CO

Responses to Previous Reviewers' Comments

 This AOP was a new start in FY19. No significant recommendations or suggestions for re-direction resulted from the 2019 Peer Review.

ALL FY19-FY2021 ATG Milestones	End Dat
Comprehensive literature search to identify validated carbon metabolism genes/proteins and known growth response(s) in wastewater sources.	12/31/201
Gene Inventory for all Sequenced Scenedesmus Genomes and Public Transcriptome Datasets Collected from NCBI	3/31/2019
DNA Extracted From Scenedesmus obliquus 152Z - 50 ug of High Molecular Weight (50 kbp average length) to support construction of 3 scaffolding libraries.	6/30/2019
Custom, in silico model constructed for organic and inorganic carbon uptake, regulation, and metabolism conserved in all sequenced Scenedesmus strains with zero gaps in proposed pathways.	9/30/2019
New publicly available genomes on NCBI deposited into Greenhouse (stretch)	3/31/2019
Replicated studies completed to screen for 30% improved growth in mixotrophic and heterotrophic growth on C2-C6 monomers over autotrophic conditions.	12/31/201
New publicly available genomes on NCBI deposited into Phycocosm	3/31/2020
Replicated (n=3) experiments conducted to assess for growth on high molecular weight carbon molecules (e.g. lignocellulosics, pectin, starch).	6/30/2020
Comparison of Contiguity (Telomere ends, N50, Gap Count, SNP analysis) from HiC, Bionano, and 10X Scaffolding Technologies.	9/30/2020
Transcriptome differential expression analysis comparing growth under high vs. low ${ m CO_2}$ levels in triplicate.	12/31/202
Genome Announcement published reporting 100% complete assembly of an algal genome	3/31/2021
¹³ C labeling of C4 metabolites and biomass production rates (AFDW over 2 week time course in triplicate) are higher than N. salina under C limiting conditions	6/30/2021
Curated/validated metabolic models of inorganic and organic carbon uptake displayed on the Greenhouse website.	9/30/2021